ED-459

M.A./M.Sc. 2nd Semester
Examination, May-June 2021

MATHEMATICS

Paper - I

Advanced Abstract Algebra-II

Time : Three Hours] [Maximum Marks : 80
Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Show that $R c$ is large for $c \neq 0, c \in R$ and R is a noetherian integral domain.
(b) Show that for any noetherian ring R each ideal contains a finite product of prime ideals.

(2)

(c) Can we prove every submodule of a noetherian module is finitely generated? How?

Unit-II

2. (a) Prove that regular elements in $A(V)$ form a group.
(b) In V define T by

$$
\left(\sum_{n=0}^{3} \alpha_{n} x^{n}\right) T=\sum_{n=0}^{3} \alpha_{n}(x+1)^{n} .
$$

Compute the matrix of T in the basis (1 , $\left.1+x, 1+x^{2}, 1+x^{3}\right)$.
(c) If V is an n-dimensional vector space over F, then for given $T \in A(V)$ there exists a non-trivial polynomial $g(x) \in F[x]$ of degree at most n^{2}, such that $g(T)=0$. Prove it.

Unit-III

3. (a) Show that the elements S and T in $A_{F}(V)$ are similar in $A_{F}(V)$ if and only if they have the same elementary divisors.

(3)

(b) Find all possible rational canonical forms and elementary divisors for the 6×6 matrix in F_{6} having $(x-1)\left(x^{2}+1\right)^{2}$ as minimal polynomial.
(c) Define nilpotent transformation and show that $S T-T S$ is nilpotent iff $S, T \in A_{F}(V)$, $S T$-TS commutes with S and F is of characteristics zero.

Unit-IV

4. (a) Obtain the Smith normal form and rank for

$$
\left[\begin{array}{ccc}
-(x+3) & 2 & 0 \\
1 & -x & 1 \\
1 & -3 & -(x+2)
\end{array}\right] .
$$

(b) Show that if V is a finite dimensional vector space over F, then V is a finitely generated $F[x]$ module.
(c) Let $T \in \operatorname{Hom}_{F}(V, V)$. Then show that there exists a basis of V with respect to which the matrix of T is $A=\operatorname{diag}\left(B_{1}, B_{2}, \ldots . . B r\right)$ where B_{i} is the companion matrix of a certain unique polynomial $f_{i}(x), i=1,2$,r such that $f_{1}(x)\left|f_{2}(x)\right| \ldots . . \mid f_{r}(x)$.

(4)

Unit-V

5. (a) Find the rational canonical form of a matrix whose invariant factors are $x+2$, $x^{2}-x-6, x^{3}-2 x^{2}-5 x+6$.
(b) Find Jordan canonical form of a matrix with characteristics polynomial $p(x)=(x-1)^{2}(x+1)$.
(c) Find invariant factors, elementary divisors and Jordan canonical form of the matrix

$$
\left[\begin{array}{rrr}
0 & 4 & 2 \\
-3 & 8 & 3 \\
4 & -8 & -2
\end{array}\right] .
$$

