ED-460

M.A./M.Sc. 2nd Semester
Examination, May-June 2021

MATHEMATICS

Paper - II
Real Analysis-II

Time : Three Hours] [Maximum Marks : 80
Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Let f is bounded on $[a, b], f$ has only finitely many points of discontinuity on $[a, b]$ and α is continuous at every point at which f is discontinuous. Then show that $f \in \mathbb{R}(\alpha)$.

(2)

(b) Let α be a monotonically increasing function on $[a, b]$ and $\alpha^{\prime} \in \mathbb{R}[a, b]$. Let f is bounded real function on $[a, b]$. Then prove that $f \in \mathbb{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathbb{R}[a, b]$. In that case
$\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
(c) If γ^{\prime} is continuous on $[a, b]$, then prove that γ is rectifiable and $\Lambda_{\gamma}=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t$.

Unit-II

2. (a) Prove that a countable union of measurable set is a measurable set.
(b) Show that a function is simple iff it is measurable and assumes only a finite number of values.
(c) Let $\left\{E_{i}\right\}$ be an infinite decreasing sequence of measurable sets; that is, a sequence with $E_{i+1} \subset E_{i}$, for each $i \in N$. Let $m\left(E_{i}\right)<\infty$ for at least one $i \in N$. Then
show that $m\left(\bigcap_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)$.

(3)

Unit-III

3. (a) The class \mathscr{B} of all μ^{*}-measurable sets is a σ-algebra of subsets of X. If $\bar{\mu}$ is μ^{*} restricted to \mathscr{B}, then prove that $\bar{\mu}$ is a complete measure on \mathfrak{B}.
(b) Show that the set function μ^{*} is an outer measure.
(c) Let (X, S, μ) be a σ-finite measure space, Σ a semi ring of sets such that $S \subset \Sigma \subset \mathscr{B}$, and $\bar{\mu}$ is a measure on Σ. If $\bar{\mu}=\mu$ on S, then prove that If $\bar{\mu}=\mu^{*}$ on Σ.

Unit-IV

4. (a) Evaluate the four derivatives at $x=0$ of the function given by

$$
f(x)= \begin{cases}a x \cdot \sin ^{2}\left(\frac{1}{2}\right)+b x \cdot \cos ^{2}\left[\frac{1}{x}\right] & \text { if } x>0 \\ 0 & \text { if } x=0 \\ a^{\prime} x \cdot \sin ^{2}\left(\frac{1}{x}\right)+b^{\prime} x \cdot \cos ^{2}\left[\frac{1}{x}\right] & \text { if } x<0\end{cases}
$$

where $a<b$ and $a^{\prime}<b^{\prime}$.
(b) State and prove Vitali's covering theorem.

(4)

(c) Let f be a bounded and measurable function defined on $[a, b]$ if
$F(x)=\int_{a}^{x} f(t) d t+F(a)$
then $F^{\prime}(x)=f(x)$ a.e. in $[a, b]$.

Unit-V

5. (a) Prove that the $\mid p$ spaces are complete.
(b) State and prove Riesz theorem.
(c) State and prove Egoroff's theorem.
