

ED-460

M.A./M.Sc. 2nd Semester Examination, May-June 2021

MATHEMATICS

Paper - II

Real Analysis-II

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Let f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b] and α is continuous at every point at which f is discontinuous. Then show that $f \in \mathbb{R}(\alpha)$.

DRG_198_(4)

(Turn Over)

(2)

(b) Let α be a monotonically increasing function on [a, b] and α' ∈ ℝ [a, b]. Let f is bounded real function on [a, b]. Then prove that f∈ ℝ(α) if and only if f α' ∈ ℝ [a, b]. In that case

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx.$$

(c) If γ' is continuous on [a, b], then prove that γ is rectifiable and $\Lambda_{\gamma} = \int_{a}^{b} |\gamma'(t)| dt$.

Unit-II

- **2.** (*a*) Prove that a countable union of measurable set is a measurable set.
 - (b) Show that a function is simple iff it is measurable and assumes only a finite number of values.
 - (c) Let $\{E_i\}$ be an infinite decreasing sequence of measurable sets; that is, a sequence with $E_{i+1} \subset E_i$, for each $i \in N$. Let $m(E_i) < \infty$ for at least one $i \in N$. Then

show that
$$m\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n)$$
.

DRG_198_(4)

(Continued)

(3)

Unit-III

- 3. (a) The class B of all μ*-measurable sets is a σ-algebra of subsets of X. If μ is μ* restricted to B, then prove that μ is a complete measure on B.
 - (b) Show that the set function μ* is an outer measure.
 - (c) Let (X, S, μ) be a σ -finite measure space, Σ a semi ring of sets such that $S \subset \Sigma \subset \mathcal{B}$, and $\overline{\mu}$ is a measure on Σ . If $\overline{\mu} = \mu$ on S, then prove that If $\overline{\mu} = \mu^*$ on Σ .

Unit-IV

4. (a) Evaluate the four derivatives at x = 0 of the function given by

$$f(x) = \begin{cases} ax.\sin^2\left(\frac{1}{2}\right) + bx.\cos^2\left[\frac{1}{x}\right] & \text{if } x > 0\\ 0 & \text{if } x = 0\\ a'x.\sin^2\left(\frac{1}{x}\right) + b'x.\cos^2\left[\frac{1}{x}\right] & \text{if } x < 0 \end{cases}$$

where a < b and a' < b'.

(b) State and prove Vitali's covering theorem.

DRG_198_(4)

(Turn Over)

(4)

(c) Let f be a bounded and measurable function defined on [a, b] if $F(x) = \int_{a}^{x} f(t) dt + F(a)$ then F'(x) = f(x) a.e. in [a, b].

Unit-V

- 5. (a) Prove that the p spaces are complete.
 - (b) State and prove Riesz theorem.
 - (c) State and prove Egoroff's theorem.

DRG_198_(4)

100