

ED-462

M.A./M.Sc. 2nd Semester Examination, May-June 2021

MATHEMATICS

Paper - IV

Advanced Complex Analysis-II

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) State and prove Weierstrass factorization theorem.
 - (b) To prove for $\operatorname{Re} z > 1$,

$$G(z)\overline{|(z)|} = \int_0^\infty \left(e^t - 1\right)^{-1} t^{z-1} dt$$

(c) State and prove Mittag-Leffler's theorem.

DRG_52_(3)

(Turn Over)

(2)

Unit-II

2. (*a*) State and prove Schwarz reflection principle.

(b) Show that the series
$$\sum_{n=0}^{\infty} \frac{z^n}{z^{n+1}}$$
 and

$$\sum_{n=0}^{\infty} \frac{(z-i)^n}{(z-i)^{n+1}}$$
 are analytic continuation to

each other.

(c) Let $\gamma : [0, 1] \to C$ be a path and let $\{(f_t, D_t) : 0 \le t \le 1\}$ be an analytic continuation along γ . For $0 \le t \le 1$ let R(t) be the radius of convergence of the power series expansion of f_t about $z = \gamma(t)$. Then either $R(t) = \infty$ or $R: [0, 1] \to (0, \infty)$ is continuous.

Unit-III

- 3. (a) State and prove Harnack's theorem.
 - (b) Let G be a region and $f: \delta_{\infty} G \to R$ a continuous function. Then show that $u(z) = \sup \{ \phi(z) : \phi \in P(f, G) \}$ defines a harmonic function u in G.

DRG_52(3)

(Continued)

(3)

- (c) Let G be a region, then prove that :
 - (i) The matrix space H(G) is complete.
 - (*ii*) If $\{u_n\}$ is a sequence in H(G) such that $u_1 \le u_2 \le \dots$ then either $u_n(z) \to \infty$ uniformly on compact subset of G or $\{u_n\}$ converges in H(G) to a harmonic function.

Unit-IV

- 4. (a) Define order of an entire function. Find the order of polynomial $P(z) = a_0 + a_1 z$ $+ a_2 z^2 + \dots + a_n z^n, a_n \neq 0.$
 - (b) State and prove Poisson-Jensen formula.
 - (c) State and prove Borel's theorem.

Unit-V

- 5. (a) State and prove Bloch's theorem.
 - (b) State and prove Schottky's theorem.
 - (c) State and prove $\frac{1}{4}$ -theorem.

DRG_52(3)

100