

ED-463

M.A./M.Sc. 2nd Semester Examination, May-June 2021

MATHEMATICS

Paper - V

Advanced Discrete Mathematics-II

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Define connectivity of a graph and prove that if the intersection of two paths in a graph is a disconnected graph then the union of the two paths has at least one circuit.
 - (b) Define Tree and prove that a graph is a tree if and only if there is one and only path between every pair of vertices.
 - (c) Define planar graph and state and prove Euler's formula for connected planar graph.

DRG_252_(4)

(Turn Over)

(2)

Unit-II

- 2. (a) Define fundamental cut sets and prove that every circuit has an even number of edges in common with every cut set.
 - (b) Explain the incidence matrix and adjacency matrix of a graph.
 - (c) The necessary and sufficient condition for a connected graph G to be an Euler graph is that 'all vertices of G are of even degree'. Show that.

Unit-III

3. (a) Define weighted graph and write an algorithm for shortest path in weighted graph and use it to find shortest path from a to z in the graph shown in fig. where numbers associated with the edges are the weights.

- (b) Explain Warshall's algorithm and lct $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3), (3, 4), (2, 1)\}$ be a relation on R then find transitive closure of R.
- (c) Explain Tree Traversals and determine the order in which the vertices of the binary tree given below will be visited under

DRG_252_(4)

(Continued)

(i) In order (ii) Pre order (iii) Post order

- 4. (a) Design a finite state machine M which can add two binary numbers and compute the sum of 101110 and 010011.
 - (b) Define equivalent states and find π_0 , π_1 and π_2 for the following finite state machines :

	State	Input		Output
		0	1	
\Rightarrow	S_0	S_1	S_5	0
	S_1	S_0	S_5	0
	S_2	S_6	S_0	0
	S_3	S_7	S_1	0
	S_4	S_0	S_6	0
	S_5	S_7	S_2	1
	$S_0 \\ S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \\ S_7$	S_0	S_3	1
	$\tilde{S_7}$	$S_0 \\ S_6 \\ S_7 \\ S_0 \\ S_7 \\ S_0 \\ S_0 \\ S_0$	$S_5 \\ S_5 \\ S_0 \\ S_1 \\ S_6 \\ S_2 \\ S_3 \\ S_2$	1

 $DRG_252_(4)$

(Turn Over)

(4)

(c) Define homomorphism. Let S be any state in a finite state machine and let x and y be any words then f(S, xy) = f(f(S, x), y) and g(S, xy) = g(f(S, x), y).

Unit-V

- 5. (a) Define finite state automaton and design a finite state automaton that accepts those strings over {0, 1} such that the number of zeros is divisible by 3.
 - (b) Construct deterministic finite state automaton equivalent to the following non deterministic finite state automaton $M = (\{0, 1\}, \{S_0, S_1\}, S_0, \{S_1\}, f\}$ where f is given by the table

$\backslash I$	f		
$S \searrow$	0	1	
S ₀	$\{S_0, S_1\}$	$\{S_1\}$	
<i>S</i> ₁	φ	$\{S_0, S_1\}$	

(c) Write any two differences between Moore and Mealy Machine and consider the Mealy Machine described by the transition tables. Construct a Moore Machine which is equivalent to the Mealy Machine.

	Present state	Input $a = 0$		Input $a = 1$	
		state	output	state	output
\Rightarrow	S_1	S_3	0	S_2	0
	S_2	S_1	1	S_4	0
	$S_{\overline{3}}$	S_2	1	S_1	1
	S_4^{j}	$\tilde{S_4}$	1	S_3^{1}	0

DRG_252_(4)

100