

ED-762

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Paper - I

Functional Analysis-II

Time : Three Hours]

[Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) State and prove closed graph theorem.
 - (b) Let X be a Banach space and Y be a normed linear space. Let $\{T_i\}$ be a nonempty set of continuous linear transformation from X into Y, such that $\{T_i(x)\}$ is bounded for each x and X, then show that is $\{||T_i||\}$ is bounded.

DRG_106_(3)

(Turn Over)

(2)

(c) Let T be a bounded linear transformation from a Banach space X into a normed linear space Y. Then show that the openness of T implies the completness of Y.

Unit-II

- 2. (a) Let X and Y be normed linear space. Then show that B(X, Y) the set of all bounded linear transformations from X into Y, is a normed linear space.
 - (b) Let X is a Banach space. Then show that X is reflexive if and only if X^* is reflexive, where X^* is the conjugate space of a normed linear space X.
 - (c) Let E be a real normed linear space and let M be a linear subspace of E. If $f \in M^*$, then show that there is a $g \in E^*$ such that $f \subset g$ and ||g|| = ||f||.

Unit-III

- 3. (a) State and prove Bessel's inequality.
 - (b) If X is an inner product space and $x, y \in X$, then show that $|(x, y)| \le ||x|| ||y||$.
 - (c) Show that a Banach space is a Hilbert space if and only if the parallelogram law holds.

DRG_106_(3)

(Continued)

(3)

Unit-IV

- **4.** (*a*) State and prove Riesz Representation theorem.
 - (b) Prove that every Hilbert space is reflexive.
 - (c) Let T be an operator on a Hilbert space
 H. Then there exists a unique operator
 T* on H such that

$$(Tx, y) = (x, T^*y)$$

for all $x, y \in H$.

Unit-V

- 5. (a) If T_1 and T_2 are self-adjoint, then show that $T_1 T_2$ is self-adjoint if and only if they commute, i.e. $T_1 T_2 = T_2 T_1$.
 - (b) State and prove generalized Lax-Milgram theorem.
 - (c) If T is a normal operator on a Hilbert space H and D is any scalar, then show that $T-\lambda I$ is also normal.

DRG_106_(3)

100