ED-766

M.A./M.Sc. 4th Semester

Examination, May-June 2021

MATHEMATICS

Paper - III (C)
Fuzzy Set Theory and Its Applications-II
Time : Three Hours] [Maximum Marks : 80

Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Define fuzzy propositions with properties and examples.
(b) Define fuzzy quantifiers with examples.
(c) Write the method of inference from conditional and qualified propositions.

(2)

Unit-II

2. (a) Let f be a function defined by $f(a)=e^{a}$ for all $a \in[0,1]$. Find the fuzzy intersection, fuzzy union, fuzzy implication and fuzzy compliment generated by f.
(b) Explain approximate reasoning and fuzzy language with one such example.
(c) Write the interpolation method and show that $B_{2}^{1} \subseteq B_{4}^{1} \subseteq B_{1}^{1}=B_{3}^{1}$.

Unit-III

3. (a) Write a short note on design of fuzzy controllers.
(b) Discuss possible ways of fuzzyfying the general dynamic system.
(c) Discuss the design of a air conditioner fuzzy controller.

Unit-IV

4. (a) Define defuzzification and write any two methods of defuzzification.

(3)

(b) Aggregate graphically the fuzzy sets:

$$
\begin{aligned}
& A_{1}=\frac{0}{0}, \frac{3}{1}, \frac{3}{2}, \frac{3}{3}, \frac{3}{4}, \frac{0}{5} \\
& A_{2}=\frac{0}{3}, \frac{.}{4}, \frac{.}{5}, \frac{5}{6}, \frac{0}{7} \\
& A_{3}=\frac{0}{5}, \frac{1}{6}, \frac{1}{7}, \frac{0}{8}
\end{aligned}
$$

and solve it by the centroid method.
(c) Solve the following fuzzy linear programming problems

Max. $z=6 x_{1}+5 x_{2}$
Subject to

$$
\begin{aligned}
& (5,3,2) x_{1}+(6,4,2) x_{2} \leq(25,6,9) \\
& (5,2,3) x_{1}+(2,1.5,1) x_{2} \leq(13,7,4) \\
& x_{1}, x_{2}>0
\end{aligned}
$$

Unit-V

5. (a) Let each individual of four decision makers has a total preference ordering $P_{i}(i \in N)$ on a set of alternatives $X=\{a, b, c, d\}$ as
$P_{1}=(a, b, d, c) ; P_{2}=(a, c, b, d) ;$
$P_{3}=(b, a, c, d) ; P_{4}=(a, d, b, c)$

DRG_212_(4)

(4)

Find the fuzzy preference relation. Also find α-cuts of the fuzzy relation and group level of agreement concernng the social choice denoted by the total ordering (a, b, c, d).
(b) Explain individual and multiperson decision making in fuzzy environment.
(c) Explain construction of an ordering of all given alternatives by Shimura method.

