

ED-768

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Optional - A

Paper - IV

Operations Research

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use dynamic programming to solve Minimize $z = p_1 \log p_1 + p_2 \log p_2$

 $+ p_n \log p_n$

Subject to the constraints :

$$p_1 + p_2 + p_3 + \dots + p_n = 1$$
 and $p_j \ge 0$ (*j*=1, 2, *n*)

DRG_268_(4)

(Turn Over)

- (b) What is principle of optimality? Write the recursive equation approach to solve dynamic programming problem.
- (c) Use dynamic programming to solve the following L.P.P. Maximize $z = 3x_1 + 5x_2$ Subject to the constraints : $x_1 \le 4$, $x_2 \le 6$, $3x_1 + 2x_2 \le 18$ and $x_1, x_2 \ge 0$

Unit-II

- 2. (a) Consider a 'modified' form of 'matching biased wins' game problem. The matching player is paid ₹ 8 if the two coins turns both heads and ₹ 1 if the coins turns both tails. The non-matching player is paid ₹ 3 when two coins do not match. Given the choice of being the matching or non-matching player, which one would you choose and what would be your strategy?
 - (b) Solve the following problem graphically:

Player B Player A $\begin{bmatrix} 3 & -3 & 4 \\ -1 & 1 & -3 \end{bmatrix}$

(c) For the following playoff matrix, find the value of the game and the strategies of

DRG_268_(4)

(Continued)

(2)

(3)

player A and B by using Linear Programming:

Player *B* Player *A* $\begin{bmatrix} 3 & -1 & 4 \\ 2 & 6 & 7 & -2 \end{bmatrix}$

Unit-III

- 3. (a) Solve the following integer P.P.: Maximize z = 2x₁ + 3x₂ Subject to the constraints: -3x₁ + 7x₂ ≤ 14, 7x₁ - 3x₂ ≤ 14, x₁, x₂ ≥ 0 and are integers
 (b) Use branch and bound method to solve the following L.P.P.: Minimize z = 4x₁ + 3x₂
 - Subject to the constraints : $5x_1 + 3x_2 \ge 30$, $x_1 \le 4$, $x_2 \le 6$, $x_1, x_2 \ge 0$ and are integers
 - (c) Maximize $z = x_1 + x_2$ Subject to the constraints : $3x_1 + 2x_2 \le 5$, $x_2 \le 2$, $x_1, x_2 \ge 0$ and x_1 is an integer.

DRG_268_(4)

(Turn Over)

(4)

Unit-IV

- **4.** (*a*) Write the applications of operations reserach to industrial problems.
 - (b) Explain petroleum and refinery operations.
 - (c) Explain blending problems.

Unit-V

5.	<i>(a)</i>	Obtain the necessary and sufficient
		conditions for the optimum solutions of
		the following NLPP :
		Minimize $z = f(x_1, x_2)$
		$= 3e^{2x_1+1} + 2e^{x_2+5}$
		Subject to the constraints :
		$x_1 + x_2 = 7$ and
		$x_1, x_2 \ge 0$
	(<i>b</i>)	Use Wolfe's method to solve
		Max. $z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$
		Subject to the constraints :
		$x_1 + 2x_2 \le 2$ and
		$x_1, x_2 \stackrel{2}{\geq} 0$
	(c)	Solve the following quadratic
	(0)	programming problems by using Beale's
		method :
		2
		Maximize $z = 2x_1 + 3x_2 - x_1^2$
		Subject to the constraints :
		$x_1 + 2x_2 \le 4$ and
		$x_1 + 2x_2 = 1$ and

DRG_268_(4)

100