ED-768

M.A./M.Sc. 4th Semester
Examination, May-June 2021

MATHEMATICS

Optional - A
Paper - IV
Operations Research

Time : Three Hours]
 [Maximum Marks : 80

Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use dynamic programming to solve

Minimize $z=p_{1} \log p_{1}+p_{2} \log p_{2} \ldots .$.

$$
+p_{n} \log p_{n}
$$

Subject to the constraints:

$$
\begin{aligned}
& p_{1}+p_{2}+p_{3}+\ldots .+p_{n}=1 \quad \text { and } \\
& p_{j} \geq 0(j=1,2, \ldots . n)
\end{aligned}
$$

(2)

(b) What is principle of optimality? Write the recursive equation approach to solve dynamic programming problem.
(c) Use dynamic programming to solve the following L.P.P. Maximize $z=3 x_{1}+5 x_{2}$ Subject to the constraints:

$$
\begin{aligned}
& x_{1} \leq 4 \\
& x_{2} \leq 6 \\
& 3 x_{1}+2 x_{2} \leq 18 \text { and } \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Unit-II

2. (a) Consider a 'modified' form of 'matching biased wins' game problem. The matching player is paid ₹ 8 if the two coins turns both heads and ₹ 1 if the coins turns both tails. The non-matching player is paid ₹ 3 when two coins do not match. Given the choice of being the matching or nonmatching player, which one would you choose and what would be your strategy?
(b) Solve the following problem graphically:

> Player B
> Player $A\left[\begin{array}{rrr}3 & -3 & 4 \\ -1 & 1 & -3\end{array}\right]$
(c) For the following playoff matrix, find the value of the game and the strategies of

(3)

player A and B by using Linear Programming :
Player B
Player $A \underset{2}{1}\left[\begin{array}{rrr}3 & -1 & 4 \\ 6 & 7 & -2\end{array}\right]$

Unit-III

3. (a) Solve the following integer P.P.:

Maximize $z=2 x_{1}+3 x_{2}$
Subject to the constraints:
$-3 x_{1}+7 x_{2} \leq 14$,
$7 x_{1}-3 x_{2} \leq 14$,
$x_{1}, x_{2} \geq 0$
and are integers
(b) Use branch and bound method to solve the following L.P.P.:
Minimize $z=4 x_{1}+3 x_{2}$
Subject to the constraints:
$5 x_{1}+3 x_{2} \geq 30$,
$x_{1} \leq 4$,
$x_{2} \leq 6$,
$x_{1}, x_{2} \geq 0$
and are integers
(c) Maximize $z=x_{1}+x_{2}$

Subject to the constraints:

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \leq 5, \\
& x_{2} \leq 2, \\
& x_{1}, x_{2} \geq 0 \text { and } \\
& x_{1} \text { is an integer. }
\end{aligned}
$$

(4)

Unit-IV

4. (a) Write the applications of operations reserach to industrial problems.
(b) Explain petroleum and refinery operations.
(c) Explain blending problems.

Unit-V

5. (a) Obtain the necessary and sufficient conditions for the optimum solutions of the following NLPP:
Minimize $z=f\left(x_{1}, x_{2}\right)$

$$
=3 e^{2 x_{1}+1}+2 e^{x_{2}+5}
$$

Subject to the constraints :

$$
\begin{aligned}
& x_{1}+x_{2}=7 \text { and } \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(b) Use Wolfe's method to solve

Max. $z=4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}$
Subject to the constraints:

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 2 \text { and } \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(c) Solve the following quadratic programming problems by using Beale's method:
Maximize $z=2 x_{1}+3 x_{2}-x_{1}^{2}$
Subject to the constraints:

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 4 \text { and } \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

