

FD-2851

BCA (Part-I) Examination, 2022

DISCRETE MATHEMATICS

Paper - I

Time	:	Three	Hours]	[Maximum		Marks	:	80
				[Minimum	Pass	Marks	:	27

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) (1) If $p \equiv \text{Ramesh}$ is a player $q \equiv \text{Mohan}$ is wise, then write the following symbols in sentence :
 - (i) $\sim pv \sim q$

$$(ii) \sim (p \land q)$$

DRG_14(7)

(Turn Over)

(2)

- (*II*) Write the following sentences in symbols :
 - (*i*) Until Sheela will not come I shall not go to college.
 - (*ii*) When Sheela will come then I shall go to colleage.
- (*III*) Write True or False of the following statements :
 - (*i*) $\{2, 3\} \subset \{2, 4, 6\}$
 - (*ii*) $5 \in \{1, 3, 5\}$
- (IV) Are the following propositions?
 - (i) Some roses are black.
 - (ii) May you live long.
- (b) Prove that $(p \Leftrightarrow q) \land (q \Leftrightarrow r) \Rightarrow (p \Leftrightarrow r)$ is a Tautology.
- (c) (1) If Q(x) = x is a rational number.

R(x) = x is a real number.

then translate the following sentences into symbols :

- (i) R is a real number.
- *(ii)* Every rational number is a real number.
- (*II*) Negate each of the following statements :
 - (i) $\forall x (|x|=x)$
 - (*ii*) $\exists x (x + 2 = x)$

DRG_14(7)

(Continued)

(*III*) Write the following predicate into symbols and also write its negative in symbols. "Every rational number is a real number."

Unit-II

- 2. (a) (I) In a Boolean algebra B, the identity elements are complementary to each other i. e., for $0, 1 \in B$, then show that :
 - (*i*) 0' = 1
 - (*ii*) 1' = 0
 - (II) In a Boolean algebra, show that if a+b=a+c and ab=ac, then b=c.
 - (b) (I) Show that the order relation ≤ is partial order relation in a Boolean algebra.
 - (II) In a Boolean algebra B, if $x \le y$ and $y \le x$, then prove that x = y.
 - (c) (I) Construct a circuit for the Boolean function

$$F(a, b, c) = a \cdot b \cdot c + a' \cdot b \cdot c$$

Simplify it and draw the figure.

(II) Draw the logic circuit with inputs a, b, c and output X where

$$X = abc + a'c' + b'c'$$

DRG_14(7)

(Turn Over)

(4)

Unit-III

3. (*a*) (*I*) Express the following function in disjunctive normal form in the smallest possible number of variables :

$$f(x, y, z) = xy' + xz + xy$$

(*II*) Express the following function in conjunctive normal form :

$$f(x, y, z) = (xy' + xz)' + x'$$

(b) (1) Simplify the following circuit.

(*II*) Design a 3-terminal circuit which gives the real forms to the following functions :

$$f = xzw + y'zw$$
$$g = xzw + y'zw + x'y'z$$

DRG_14(7)

(5)

(c) (I) Draw the binomial net for the following flow functions :

 $x \cdot y \cdot z + x' \cdot y \cdot z + xy'z + x'y'z'$

(*II*) Design a tree-net in three variables for the flow function : xyz + x'yz + xy'z + x'y'z

Unit-IV

- 4. (a) (I) If $A = \{1, 2, 3\}$, $B = \{2, 4\}$ and $C = \{3, 5\}$, then find $A \times (B C)$.
 - (II) If $A = \{1, 2\}$, $B = \{2, 3\}$ and $C = \{3, 5\}$, then find $(A \times B) \cap (A \times C)$.
 - (b) (1) Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$ and let

 $R = \{(1, a), (2, a), (2, b), (3, a), (3, b)\}$

be a relation from A to B, then find R^{-1} , d(R), r(R), $d(R^{-1})$ and $r(R^{-1})$

- (*II*) Is the relation 'is less than' transitive in the set of natural numbers ?
- (c) (*I*) Prove that the following sets are countable :
 - (i) the set I of all integers;

(*ii*) the set E of all positive integers.

(II) If $A = \{1, 3, 5\}$, $B = \{a, b, c\}$ and $1 \leftrightarrow a, 3 \leftrightarrow b, 5 \leftrightarrow c$, show that it is one-one onto mapping.

DRG_14(7)

(Turn Over)

(6)

Unit-V

- 5. (a) (I) Show that the vertices of odd degree (odd vertices) in a graph is always even.
 - (II) Draw the equivalent labelled graphs for G_1 and G_2 if

$$G_{1} = \{ \{v_{1}, v_{2}, v_{3}\} \{v_{1}, v_{2}\} \{v_{1}, v_{3}\} \\ \{v_{2}, v_{3}\} \}$$
$$G_{2} = \{ \{w_{1}, w_{2}, w_{3}\} \{w_{1}, w_{2}\} \{w_{1}, w_{3}\} \\ \{w_{2}, w_{3}\} \}$$

(b) (1) Draw the graphs represented by the following adjacency matrices :

[0	1	1	0]
1	0	1	1
1	1	0	1
0	1	1	0

(*II*) Express the following algebraic expressions in binary trees :

$$(x - y) + ((y + z) + w)$$

DRG_14_(7)

(Continued)

(7)

(c) (I) Which of the following graphs have a Hamiltonian circuit?

(*II*) A graph with at least one edge is 2chromatic if and only if it has no circuits of old length.