

ED-313

M.A./M.Sc 1st Semester Examination, March-April 2021

MATHEMATICS

Paper - V

Advanced Discrete Mathematics-I

Time : Three Hours	[Maximum	Marks	:	80
	[Minimum Pass	Marks	:	16

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Demonstrate that R is a valid inference from the premises $P \rightarrow Q$, $Q \rightarrow R$ and P.
 - (b) Write short notes on propositional logic and tautologies.
 - (c) Show that

$$] (P \land Q) \to (] P \lor (] P \lor Q)) \Leftrightarrow (] P \lor Q)$$

DRG_253_(4)

(Turn Over)

(2)

Unit-II

- 2. (a) Define Homomorphism of semi-group and show that, let X be a set of n element, let X* denote the free semigroup generated by X and let (S, \oplus) be any other semigroup of any n generators then three exist a Homomorphism $g: X^* \to S$.
 - (b) Define the following:
 - (*i*) Congruence relation and quotient semigroups
 - (ii) Subsemigroup and submonoids
 - (c) Define monoid and show that let (M, *) be a monoid then there exists a subset $T \subseteq M^m$ such that (M, *) is isomorphic to the monoid (T, 0).

Unit-III

3. (*a*) Define distributive lattice and show that the lattices given by the following diagrams in figure are not distributive.

DRG_253_(4)

(Continued)

(3)

- (b) Define complemented lattice and show that two bounded lattice L_1 and L_2 are complemented if and only if $L_1 \times L_2$ is complemented.
- (c) Write short notes on sublattice and switching algebra.

Unit-IV

4. (*a*) Use the Karnaugh map representation to find a minimal sum-of-product of the following function :

 $f = \sum (10, 12, 13, 14, 15)$

(b) Define gates and draw the logical expression with inputs a, b and output f where :

$$f = (a+b+c) \cdot (a+b') \cdot (a'+b') \cdot (b'+c')$$
$$+ a'b'c'$$

- (c) Define the following :
 - (i) Atoms and Minterms
 - (ii) Sum of product canonical forms

Unit-V

5. (a) Define grammar and consider the grammar G with $V = \{S, 0, 1\}, T = \{0, 1\}$ and $P = \{S \rightarrow 11S, S \rightarrow 0\}$. Find L(G).

DRG_253_(4)

(Turn Over)

(4)

- (b) Define language and show that the language $L(G) = \{a^n b \ a^n : n \ge 1\}$ is generated by grammar $G = (\{S, c\}, \{a, b\}, S, \phi)$ where ϕ is the set of production $S \rightarrow aca, c \rightarrow aca, c \rightarrow b$.
- (c) Write short note on conversion of infix expressions to polish notation and reverse polish notation.

DRG_253_(4)

720