ED-313
M.A./M.Sc 1st Semester

Examination, March-April 2021

MATHEMATICS

> Paper - V
> Advanced Discrete Mathematics-I

Time : Three Hours] [Maximum Marks : 80
[Minimum Pass Marks : 16
Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Demonstrate that R is a valid inference from the premises $P \rightarrow Q, Q \rightarrow R$ and P.
(b) Write short notes on propositional logic and tautologies.
(c) Show that

$$
\rceil(P \wedge Q) \rightarrow(\rceil P \vee(\rceil P \vee Q)) \Leftrightarrow(\rceil P \vee Q)
$$

(2)

Unit-II

2. (a) Define Homomorphism of semi-group and show that, let X be a set of n element, let X^{*} denote the free semigroup generated by X and let (S, \oplus) be any other semigroup of any n generators then three exist a Homomorphism $g: X^{*} \rightarrow S$.
(b) Define the following:
(i) Congruence relation and quotient semigroups
(ii) Subsemigroup and submonoids
(c) Define monoid and show that let $\left(M,{ }^{*}\right)$ be a monoid then there exists a subset $T \subseteq M^{m}$ such that $\left(M,{ }^{*}\right)$ is isomorphic to the monoid $(T, 0)$.

Unit-III

3. (a) Define distributive lattice and show that the lattices given by the following diagrams in figure are not distributive.

DRG_253_(4)
(Continued)

(3)

(b) Define complemented lattice and show that two bounded lattice L_{1} and L_{2} are complemented if and only if $L_{1} \times L_{2}$ is complemented.
(c) Write short notes on sublattice and switching algebra.

Unit-IV

4. (a) Use the Karnaugh map representation to find a minimal sum-of-product of the following function:

$$
f=\sum(10,12,13,14,15)
$$

(b) Define gates and draw the logical expression with inputs a, b and output f where :

$$
\begin{aligned}
f=(a+b+c) \cdot\left(a+b^{\prime}\right) \cdot\left(a^{\prime}+b^{\prime}\right) \cdot\left(b^{\prime}\right. & \left.+c^{\prime}\right) \\
& +a^{\prime} b^{\prime} c^{\prime}
\end{aligned}
$$

(c) Define the following:
(i) Atoms and Minterms
(ii) Sum of product canonical forms

Unit-V

5. (a) Define grammar and consider the grammar G with $V=\{S, 0,1\}, T=\{0,1\}$ and $P=\{S \rightarrow 11 S, S \rightarrow 0\}$. Find $L(G)$.

(4)

(b) Define language and show that the language $L(G)=\left\{a^{n} b a^{n}: n \geq 1\right\} \quad$ is generated by grammar $G=(\{S, c\},\{a, b\}$, $S, \phi)$ where ϕ is the set of production $S \rightarrow a c a, c \rightarrow a c a, c \rightarrow b$.
(c) Write short note on conversion of infix expressions to polish notation and reverse polish notation.

