ED-618

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Optional - A
Paper - IV
Operations Research - I

Time : Three Hours] [Maximum Marks : 80
[Minimum Pass Marks : 16
Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use Simplex method to solve the following linear programming problem:

Maximize $\quad z=6 x_{1}+8 x_{2}$
Subject to : $5 x_{1}+10 x_{2} \leq 60$
$4 x_{1}+4 x_{2} \leq 40$
$x_{1}, x_{2} \geq 0$

(2)

(b) Solve the following linear programming problem using the result of its dual:

Minimize $\quad z=24 x_{1}+30 x_{2}$
Subject to: $2 x_{1}+3 x_{2} \geq 10$
$4 x_{1}+9 x_{2} \geq 15$
$6 x_{1}+6 x_{2} \geq 20$
$x_{1}, x_{2} \geq 0$
(c) Consider the following linear programming problem:

Maxmize $\quad z=10 x_{1}+15 x_{2}+20 x_{3}$
Subject to: $2 x_{1}+4 x_{2}+6 x_{3} \leq 24$

$$
3 x_{1}+9 x_{2}+6 x_{3} \leq 30
$$

$x_{1}, x_{2}, x_{3} \geq 0$
and check whether the optimality is affected, if the profit coefficients are changed from $(10,15,20)$ to $(7,14,15)$. If so, find the revised optimum solution.

Unit-II

2. (a) Solve the following linear programming problem using big-M method:

(3)

Minimize $\quad z=2 x_{1}+3 x_{2}$
Subject to : $x_{1}+x_{2} \geq 6$

$$
7 x_{1}+x_{2} \geq 14
$$

$$
x_{1}, x_{2} \geq 0
$$

(b) Solve the following linear programming problem using dual simplex method:

Minimize $\quad z=2 x_{1}+4 x_{2}$
Subject to : $2 x_{1}+x_{2} \geq 4$

$$
x_{1}+2 x_{2} \geq 3
$$

$$
2 x_{1}+2 x_{2} \leq 12
$$

$$
x_{1}, x_{2} \geq 0
$$

(c) Find the Dual of the Primal:

Maximize $\quad z=x_{1}+5 x_{2}+3 x_{2}$
Subject to: $x_{1}+2 x_{2}+x_{3}=3$

$$
2 x_{1}-x_{2}=4
$$

$x_{1}, x_{2}, x_{3} \geq 0$

(4)

Unit-III

3. (a) Consider the following parametric linear programming problem:

Maximize $\quad z=(10-2 t) x_{1}+(5-3 t) x_{2}$
Subject to: $8 x_{1}+2 x_{2} \leq 48$

$$
2 x_{1}+4 x_{2} \leq 24
$$

$$
x_{1}, x_{2} \geq 0
$$

and t is a non-negative parameter. Perform parametric analysis with respect to the objective function coefficients and identify the ranges of t over which the optimality is unaffected.
(b) Write a short note on interior point algorithm.
(c) Carry out two iterations of Karmarkar's algorithm for the following problem:

Minimize $\quad z=x_{1}-2 x_{2}$
Subject to: $x_{1}-2 x_{2}+x_{3}=0$

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(5)

Unit-IV

4. (a) Discuss the similarities and dissimilarities between Transportation and Assignment problem.
(b) Use Vogel's approximation method to solve the following transportation problem :

		Destination				Supply
		1	2	3	4	
Source	1	3	1	7	4	300
	2	2	6	5	9	400
	3	8	3	3	2	500
Demand		250	350	400	200	

(c) Write steps of Hungerian method for solving Assignment problem.

Unit-V

5. (a) Write steps of PRIM algorithm for finding the Minimum Spanning Tree problem.
(b) A project is composed of 7 activities whose time estimates are listed in the

(6)

table below. Activities are identified by their beginning (i) and ending (j) node numbers :

Activity $(i-j)$	Estimate Optimistic $\left(t_{o}\right)$		Most likely $\left(t_{m}\right)$			
	1	1	7			
$\left(t_{p}\right)$				$	$	Pessimistic
:---:						
$1-3$						

(i) Draw the project network.
(ii) Find the expected duration and variance for each activity. What is the expected project length?

(7)

(c) Consider the following data of the project :

Activity	Predecessor (s)	Duration (weeks)		
		t_{o}	t_{m}	t_{p}
A	-	3	5	8
B	-	6	7	9
C	-	4	5	9
D	A	3	5	8
E	B	4	6	9
F	A	5	8	11
G	C, D	3	6	9
H	C, D, E	1	2	9

(i) Construct the project network.
(ii) Find critical path and expected completion time.

