

FD-616

M.A./M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Optional (C)

Paper - III

Fuzzy Sets and its Applications - I

Time: Three Hours] [Maximum Marks: 80

[Minimum Pass Marks: 16

Note: Answer any **two** parts from each question. All questions carry equal marks.

- 1. (a) Define law of excluded middle and law of contradiction and discuss the distributive property of (i, u, c) which satisfies these two laws.
 - (b) State characterization theorem of t-conorms and find t-conorm for $g(a) = 1 (1 a)^p$.

DRG_139_(4)

(Turn Over)

(c) Define convexity for a set graphically and show that a Fuzzy set A on R is convex iff

$$A(\lambda x_1 + (1 - \lambda)x_2) \ge \min [A(x_1), A(x_2)].$$

- 2. (a) Explain extension principle, how it differs from crisp function. Show that $\alpha [f(A)] \ge f(\alpha_A)$. Give a supportive example.
 - (b) Solve Fuzzy equation A + X = B where

$$A = \frac{.3}{[0,1)} + \frac{.5}{[1,2)} + \frac{.8}{[2,3)} + \frac{.9}{[3,4)} + \frac{1}{4} + \frac{.6}{(4,5]} + \frac{.2}{(5,6]}$$

$$B = \frac{.2}{[0,1)} + \frac{.3}{[1,2)} + \frac{.6}{[2,3)} + \frac{.5}{[3,4)} + \frac{.8}{[4,5)} + \frac{1}{6}$$
$$+ \frac{.5}{[6,7]} + \frac{.4}{[7,8]} + \frac{.2}{[8,9]} + \frac{.1}{[9,10]}$$

(c) $A(x) = \begin{cases} 0 & \text{for } x < -2 \text{ and } x > 4 \\ \frac{x+2}{3} & \text{for } -2 \le x \le 1 \\ \frac{4-x}{3} & \text{for } 1 \le x \le 4 \end{cases}$

$$B(x) = \begin{cases} 0 & \text{for } x < 1 \text{ and } x > 3 \\ x - 1 & \text{for } 1 \le x \le 2 \\ 3 - x & \text{for } 2 \le x \le 3 \end{cases}$$

Find

MIN (A, B) (x) and MAX (A, B) (x).

- 3. (a) Define crisp and fuzzy relations. Let $X = \{1, 2,, 10\}$. The cartesian product $(x \times y)$ contains 100 members. Let $R(X, X) = \{(x, y) \mid x \text{ and } y \text{ have the same remainder when divided by 3}. Is <math>R$ an equivalence relation on X? Find equivalence classes.
 - (b) Write a short note on Fuzzy morphisms.
 - (c) Prove that
 - (i) $w_i(a, d) \ge b$ iff $i(a, b) \le d$
 - (ii) $w_i (\inf a_i, b) \ge \sup w_i (a_i, b)$
- **4.** (a) Let $X = \{1, 2, ..., 100\}, Y = \{50, 51, ..., 100\}$

$$R(X,Y) = \begin{cases} 1 - \frac{x}{y} & x \le y \\ 0 & \text{otherwise} \end{cases}$$

- (i) What is the domain of R?
- (ii) What is the range of R?
- (iii) Calculate R^{-1}

- (b) Prove that min join are associative operations on binary fuzzy relations.
- (c) Write a short note on fuzzy compatibility relations.
- **5.** (a) Define the following:
 - (i) Total ignorance
 - (ii) Fuzzy measure
 - (iii) Degree of belief
 - (iv) Necessity measure
 - (b) If $X = \{a, b, c, d\}$, $m_1(a, b) = \cdot 2$, $m_1(a, c) = \cdot 3$, $m_1(b, d) = \cdot 5$, $m_2(a, d) = \cdot 2$, $m_2(b, c) = \cdot 5$, $m_2(a, b, c) = \cdot 3$. Calculate the basic probability assignment.
 - (c) $F = \frac{.4}{1} + \frac{.7}{2} + \frac{1}{3} + \frac{.8}{4} + \frac{.5}{5}$ and A(x) = 0 for all $x \notin \{1, 2, 3, 4, 5\}$. Determine Nec (A) and Pos (A).