FD-768

M.A./M.Sc. 4th Semester

Examination, May-June 2022

MATHEMATICS

Optional - A

> Paper - IV

Operations Research

Time : Three Hours] [Maximum Marks : 80
Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use dynamic programming to find the value of
Minimize $Z=y_{1} \cdot y_{2} \cdot y_{3}$
subject to the constraints:

$$
\begin{gathered}
y_{1}+y_{2}+y_{3}=5 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{gathered}
$$

(b) Find the minimum value of

$$
x_{1}^{2}+2 x_{2}^{2}+4 x_{3}
$$

subject to the constraints :

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3} \geq 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

(2)

(c) Use dynamic programming to solve the L.P.P. :

Maximize $Z=3 x_{1}+7 x_{2}$
subject to the constraints:

$$
\begin{gathered}
x_{1}+4 x_{2} \leq 8 \\
x_{2} \leq 2 \text { and } \\
x_{1} \geq 0 \\
x_{2} \geq 0
\end{gathered}
$$

Unit-II

2. (a) Use graphical method in solving the following game:

$$
\left.\begin{array}{c}
\text { Player } A \\
\text { Player } B
\end{array} \begin{array}{rrrr}
2 & 2 & 3 & -2 \\
4 & 3 & 2 & 6
\end{array}\right]
$$

(b) Use matrix oddment method to solve the following 3×3 game:

$$
\text { Player } A \begin{gathered}
\text { Player } B \\
{\left[\begin{array}{rrr}
2 & -1 & -2 \\
1 & 0 & 1 \\
-2 & -1 & 2
\end{array}\right]}
\end{gathered}
$$

(c) Solve the following game by linear programming technique:

$$
\left.\begin{array}{c}
\text { Player } B \\
\text { Player } A
\end{array} \begin{array}{rrr}
1 & -1 & 3 \\
3 & 5 & -3 \\
6 & 2 & -2
\end{array}\right]
$$

(3)

Unit-III

3. (a) Find the optimum integer solution to the all-integer programming problem:
Maximize $Z=x_{1}+x_{2}$
subject to the constraints :

$$
\begin{gathered}
3 x_{1}+2 x_{2} \leq 5 \\
x_{2} \leq 2 \\
x_{1} \geq 0 \\
x_{2} \geq 0
\end{gathered}
$$

and are integers.
(b) Describe the mixed-integer programming problem method for the solution of integer programming problem.
(c) Use branch and bound method to solve the following integer linear programming problems :
Maximize $Z=2 x_{1}+3 x_{2}$
subject to the constraints :

$$
\begin{gathered}
5 x_{1}+7 x_{2} \leq 35 \\
4 x_{1}+9 x_{2} \leq 36 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

and are integers.

Unit-IV

4. (a) Write a short note on optimal product mix and activity levels.

(4)

(b) Explain briefly the petroleum refinery operation as linear programming problem.
(c) Explain the assumptions of Leontief impact-output system.

Unit-V

5. (a) Solve the following non-linear programming problems, using the method of Lagrangian multipliers:

Minimize $Z=6 x_{1}^{2}+5 x_{2}^{2}$
subject to the constraints :

$$
\begin{gathered}
x_{1}+5 x_{2}=3 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(b) Use the Kuhn-Tucker conditions to solve the following non-linear programming problems :

Minimize $Z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
subject to the constraints :

$$
\begin{gathered}
2 x_{1}+x_{2} \leq 5 \\
x_{1}+x_{2} \leq 2 \\
x_{1} \geq 1 \\
x_{2} \geq 2 \\
x_{3} \geq 0
\end{gathered}
$$

(c) Derive the Kuhn-Tucker conditions for the quadratic programming problem.

